Late-time/stiff-relaxation asymptotic-preserving approximations of hyperbolic equations

نویسندگان

  • Christophe Berthon
  • Philippe G. LeFloch
  • Rodolphe Turpault
چکیده

We investigate the late-time asymptotic behavior of solutions to nonlinear hyperbolic systems of conservation laws containing stiff relaxation terms. First, we introduce a Chapman-Enskog-type asymptotic expansion and derive an effective system of equations describing the late-time/stiff relaxation singular limit. The structure of this new system is discussed and the role of a mathematical entropy is emphasized. Second, we propose a new finite volume discretization which, in late-time asymptotics, allows us to recover a discrete version of the same effective asymptotic system. This is achieved provided we suitably discretize the relaxation term in a way that depends on a matrix-valued free-parameter, chosen so that the desired asymptotic behavior is obtained. Our results are illustrated with several models of interest in continuum physics, and numerical experiments demonstrate the relevance of the proposed theory and numerical strategy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review

Asymptotic preserving (AP) schemes for multiscale kinetic and hyperbolic equations: a review Abstract. Kinetic and hyperbolic equations contain small scales (mean free path/time, Debye length, relaxation or reaction time, etc.) that lead to various different asymptotic regimes, in which the classical numerical approximations become prohibitively expensive. Asymptotic-preserving (AP) schemes are...

متن کامل

Asymptotic Preserving (ap) Schemes for Multiscale Kinetic and Hyperbolic Equations: a Review

Kinetic and hyperbolic equations contain small scales (mean free path/time, Debye length, relaxation or reaction time, etc.) that lead to various different asymptotic regimes, in which the classical numerical approximations become prohibitively expensive. Asymptotic-preserving (AP) schemes are schemes that are efficient in these asymptotic regimes. The designing principle of AP schemes are to p...

متن کامل

Asymptotic-preserving Godunov-type numerical schemes for hyperbolic systems with stiff and non-stiff relaxation terms

We devise a new-class of asymptotic-preserving Godunov-type numerical schemes for hyperbolic systems with stiff and non-stiff relaxation source terms governed by a relaxation time ε. As an alternative to classical operator-splitting techniques, the objectives of these schemes are twofold: first, to give accurate numerical solutions for large, small and in-between values of ε and second, to make...

متن کامل

Implicit-explicit Runge-kutta Schemes for Stiff Systems of Differential Equations

We present new implicit-explicit (IMEX) Runge Kutta methods suitable for time dependent partial differential systems which contain stiff and non stiff terms (i.e. convection-diffusion problems, hyperbolic systems with relaxation). Here we restrict to diagonally implicit schemes and emphasize the relation with splitting schemes and asymptotic preserving schemes. Accuracy and stability properties...

متن کامل

Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations

Many kinetic models of the Boltzmann equation have a diiusive scaling that leads to the Navier-Stokes type parabolic equations as the small scaling parameter approaches zero. In practical applications, it is desirable to develop a class of numerical schemes that can work uniformly with respect to this relaxation parameter, from the rareeed kinetic regimes to the hydrodynamic diiusive regimes. A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 82  شماره 

صفحات  -

تاریخ انتشار 2013